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Figure 1: Left to Right: A) Depth map of room using a single Kinect. B) Depth map with 5 additional Kinects overlapping the view, causing
prominent interference holes. C) Depth map with 5 additional overlapping Kinects while applying our interference reduction technique.

ABSTRACT

We present a method for reducing interference between multiple
structured light-based depth sensors operating in the same spectrum
with rigidly attached projectors and cameras. A small amount of
motion is applied to a subset of the sensors so that each unit sees
its own projected pattern sharply, but sees a blurred version of the
patterns of other units. If high spacial frequency patterns are used,
each sensor sees its own pattern with higher contrast than the pat-
terns of other units, resulting in simplified pattern disambiguation.

An analysis of this method is presented for a group of commodity
Microsoft Kinect color-plus-depth sensors with overlapping views.
We demonstrate that applying a small vibration with a simple mo-
tor to a subset of the Kinect sensors results in reduced interference,
as manifested as holes and noise in the depth maps. Using an ar-
ray of six Kinects, our system reduced interference-related missing
data from from 16.6% to 1.4% of the total pixels. Another experi-
ment with three Kinects showed an 82.2% percent reduction in the
measurement error introduced by interference.

A side-effect is blurring in the color images of the moving units,
which is mitigated with post-processing. We believe our technique
will allow inexpensive commodity depth sensors to form the basis
of dense large-scale capture systems.
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Index Terms: I.4.3 [Computing Methodologies]: Image Process-
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1 INTRODUCTION

The recent availability of the inexpensive Microsoft KinectTMdepth
cameras has spurred development of 3D scene capture and motion
tracking. However, as multiple units with overlapping views cause
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prominent interference, resulting in holes and noise in the computed
depth maps, the Kinect’s usefulness for building large dense real-
time capture systems has been limited.

Previous attempts to resolve this inference problem have been
effective, but do not scale past a few overlapping units. Maimone
and Fuchs [5] and Kuster et al. [4] used hole filling and filtering
techniques to fill interference holes and smooth noise for a small
number of Kinect units overlapping in view. However, these ap-
proaches are designed for filling small isolated holes characteristic
of limited interference. Berger et al. [1] installed a rotating shutter
over each unit’s projector so that the devices could be time mul-
tiplexed. They found a reduction in missing data if a single unit
was enabled per time-slice; however, for real-time applications the
approach does not practically scale beyond a few units.

In this paper, we aim to overcome the limitations of past inter-
ference reduction techniques for a class of structured light cameras.
Our solution is scalable to many overlapping units and does not
cause a reduction in frame rate. The primary detriment is a small
blurring of the color camera (if the device is so equipped) that can
be mitigated with software post-processing. We demonstrate the
effectiveness of the technique on an array of Kinect depth sensors
and believe our method is applicable to other devices that are sim-
ilar in operation. We believe our technique is the first1 to allow
simultaneous effective operation of a dense array of Kinect sensors.

2 BACKGROUND AND CONTRIBUTIONS

Structured light scanners project a known pattern into a scene and
calculate depth by measuring the deformity of the pattern as seen by
a camera. If multiple devices with overlapping views operate in the
same spectrum at the same time, they will see the patterns of other
units and may have trouble disambiguating them from their own.

1After submission of this paper, we learned that a similar technique was
developed independently at Microsoft Research Cambridge and will appear
in an upcoming publication:

Butler, A., Izadi, S., Hilliges O., Molyneaux, D., Kim, D., Hodges, S. Shake ’n’
Sense: Reducing Interference for Overlapping Structured Light Depth Cameras. To
Appear In Proc. ACM CHI Conference on Human Factors in Computing Systems,
May 2012.



This problem is exacerbated as more units overlap and if similar
patterns are used.

The Kinect sensor, as an inexpensive device designed to be used
individually in the home, constantly projects the same fixed pattern
of dots for all units on the same wavelength. Depth values are com-
puted by determining the disparity between the observed projected
pattern and a reference pattern for a known depth [2]. When cor-
relating the known and observed pattern, the unit can fail to find a
match in areas where there are overlapping dots from another de-
vice, resulting in missing data, or “holes”, in the depth map.

Since the Kinect hardware returns no data when it does not have
confidence in pattern correlation, software options are limited. If
interference is minimal, holes tend to be small and isolated. If one
assumes surfaces are smooth and continuous, the holes can be filled
as in [4] or [5]. As interference increases and holes become larger
(as in Figure 1B), the surface can no longer be inferred unless strong
assumptions are made about the scene content. Therefore, a hard-
ware solution becomes necessary.

For the Kinect, we do not have control over how the device in-
terprets what it sees, so we must change what it sees. Hardware
solutions that utilize time multiplexing, such as shuttering in [1],
must necessarily reduce that frame rate or exposure time by a fac-
tor inversely proportional to the number of overlapping devices, and
thus are not practical for more than a few devices. Thus a hardware
solution must cope with all devices projecting simultaneously.

Under these constraints, we contribute a novel solution to the
interference problem between multiple structured light sensors that
involves the introduction of relative motion between units.

3 TECHNIQUE

3.1 Theory of Operation

If a structured light scanner with a rigidly attached camera and pro-
jector is moved relative to another unit with overlapping views, and
the amount of movement of its projected pattern is significant over
the camera integration time, then each unit will see a sharp version
of its own pattern and a blurred version of the other unit’s pattern
(see Figure 2). Units in motion relative to the scene may also blur
their own patterns slightly if depths change significantly over the
integration time.

The blurring of the other unit’s pattern will help disambiguate
the overlapping patterns if the following conditions are met:

1. The pattern is high frequency, i.e. on the scale of the amount
of blur incurred, and blurring occurs in a meaningful direc-
tion, for example: not parallel to lines in the pattern. In this
case, blurring results in a significant contrast loss. For the
Kinect, this condition is met: the pattern consists of small
dots that are only a few pixels across as seen by its camera.

2. The initial patterns of the two units are close in intensity as
seen by each camera. A significant contrast loss in the inter-
fering pattern should make a unit’s own pattern more promi-
nent. For the Kinect, this condition is sometimes met: the
pattern intensity varies with the distance to the camera and
the reflectance functions of the surfaces in the scene.

3. Blurring of a unit’s own pattern (if depths change significantly
during camera integration time) should occur at a smaller
scale than spacing between pattern features. That is, features
of a unit’s own pattern should remain distinguishable. For the
Kinect, this condition is usually met, although the spacing be-
tween pattern features increases with depth, so the amount of
blur should be limited for close objects.

3.2 Motion Patterns

The motion described in Section 3.1 has a significant impact on
the design of our interference reduction system. We considered the
following parameters:

Figure 2: Pattern disambiguation. Left: Two similar overlapping pat-
terns of similar intensity are difficult to disambiguate. Right: Introduc-
ing blur into one of the high frequency patterns significantly reduces
its contrast, simplifying separation. Top: Idealized images. Bottom:
Overlapping IR dot patterns of two Kinects.

1. Motion speed: controls the magnitude of the blur
2. Motion pattern: controls the blur shape. Desirable traits are

rotational motion, which allows a constant amount of blur to
be applied to the entire image, and cyclical motion, which
allows the speed (and blur magnitude) to remain constant over
time.

3. Total extent of motion from reference position: if motion os-
cillates a minimum amount around reference position, contin-
uous camera registration is not required.

4. Degree of motion control: if camera motion is precisely con-
trolled (and known), blur present in the color camera can be
more effectively canceled.

5. Motion relationship to image sensor: if camera has a rolling
shutter, certain motion patterns can cause undesirable effects
(ex: “rolling” images).

Note that is only necessary to move enough cameras so that no
two cameras with overlapping views are both motionless.

3.3 Effect on Color Image

If our interference reduction technique is applied to a depth cam-
era that has a rigidly attached RGB camera (used to apply a color
texture to the computed depth map), as does the Kinect, a negative
side-effect is that it may produce slightly blurred images. Tech-
niques for mitigating these effects are listed in Section 4.2.

4 IMPLEMENTATION

4.1 Motion Control

We created three motion control prototypes to test our motion-based
interference reduction technique with Kinect sensors.

For the first prototype, a Kinect unit was mounted to a stepper
motor in such a way that its pitch could be controlled (see left of
Figure 3). The device was swept up and down several degrees,
resulting in multiple frames per sweep cycle. Although this one-
axis motion platform was effective at reducing multi-Kinect inter-
ference, it had several disadvantages. As the motion extent was
substantial, integrating the data with other units would require con-
tinuous camera re-registration. The motion pattern also required a
frequent change in direction, resulting in a brief period of no motion
that caused interference to reappear. The platform also required a
custom mount and approximately $100 USD in parts, two-thirds of
the cost of a Kinect.

For the second prototype, the stepper motor controller was re-
programmed to oscillate up and down the small angle necessary
to induce the desired blur, eliminating the need to continuous re-
registration. The oscillation frequency was matched to multiples of
the Kinect’s frame rate to prevent undesirable aliasing effects with
the rolling shutter and was high enough so that changes in direc-
tion did not cause interference to reappear. This prototype was also
effective but still expensive.



Figure 3: Motion platforms. Left: Motion platforms used for proto-
types 1-2 of Section 4.1. Right: Motion platform used for prototype 3
of Section 4.1.

Table 1: Test Case 1 - Two Adjacent Close Range Overlapping Units
Motion Speed

Reference No Motion Low Medium High
1 2 1 2 1 2 1 2 1 2

Additional Missing
Values (% Total Pixels)

- - 14.1 9.5 3.1 4.9 1.5 3.4 1.4 1.8

RMS Instability (mm) 1.8 1.6 2.0 1.7 1.9 1.7 1.7 1.6 2.0 1.6

For the third prototype, a small DC motor was attached to the
bottom of the Kinect with an eccentric mass on its shaft so that rapid
motor rotations induce vibrations in the Kinect (see right of Figure
3). The motor was mounted with its shaft parallel to the camera’s
line of sight so that oscillations primarily occur in the camera’s X
and Y axis. The amount of vibration was controlled by modifying
the DC motor voltage; this very simple implementation was also ef-
fective at reducing interference and was very inexpensive ($5 USD
per Kinect plus a shared power supply). However, motion patterns
were more difficult to predict and control as the cameras vibrated
about their mounted positions. This prototype was used for all re-
sults listed in Section 5.

4.2 Color Image De-Blurring

To reduce the effects of blurring, we estimated the point spread
function of the blur using a high frequency, high contrast test target
and deconvolved the image using the Lucy-Richardson method [6]
as implemented in MATLAB. In the future, we plan to incorporate
more sophisticated deblurring techniques, such as those utilizing
inertial measurements of the moving camera [3], and implement a
real-time solution. Another alternative is a reduction of the integra-
tion time of the camera, if such controls are available. Blur could
also be eliminated completely by utilizing an external camera that
is not rigidly mounted to the moving depth sensor.

5 RESULTS

5.1 Interference Reduction

To evaluate our method in terms of ground truth (interference-free
data), we compared an array of Kinects operating simultaneously
with our interference reduction technique applied to data captured
from each camera individually while all others were turned off.
We also compared the performance of the simultaneously operat-
ing Kinect array with and without our technique applied.

We characterized performance in terms of measurement error,
measurement instability, and the amount of additional missing
depth values in the depth map. Error was measured by placing a
planar target in the scene and comparing individual measurements
to a plane fit to the data and was computed as the average RMS
point-plane distance over 15 frames. (Note that we did not use the
interference-free data as ground truth for error measurement be-
cause it contains a reasonable amount of error itself). Instability
was measured by comparing corresponding measurements in the
depth maps across multiple frames of a static scene and was com-
puted as the RMS error between all pairs of images over 15 frames.
Pixels were considered in the calculations only if they did not cor-

Figure 4: Results for Test Case 2. Rows: Views from six cameras
with overlapping views. Left Column: Reference images with no in-
terference, each unit turned on individually. Middle Column: All units
operating simultaneously. Right Column: All units operating simulta-
neously with our interference reduction technique applied.

respond to missing data in either image and the error was below
a threshold. (The threshold prevents large errors caused by noise
at depth discontinuities from skewing the results). The amount of
additional missing depth values was computed as the number of
missing data values above the amount found in the ground truth
data set, expressed as a percent of total image area and averaged
over a 15 frame sequence. Note that the ground truth data set also
has missing data – the result of surfaces that were occluded, did not
reflect infrared light, or were highly specular.

We applied our evaluation to three different Kinect configura-
tions. The amount of missing values was evaluated in Test Cases 1
and 2, and error was measured in Test Case 3. Instability was also
measured in all cases.

Test Case 1, quantified in Table 1, presents a near worst case pat-
tern overlap scenario to show the robustness of our method. Two
cameras were placed in very close proximity to each other (nearly
touching), were aimed at slightly different angles, and were very
close to objects in the scene (near the Kinect’s minimum depth
range of approx. 50cm). The scene used is the same as shown
in Figure 6. Camera 1 was placed in motion while camera 2 stayed
a rest, resulting in very significant interference. As motion speeds
increased, the amount of missing depth values decreased by a min-
imum factor of 3 to a maximum factor of 10. Changes in measure-
ment instability were negligible.



Table 2: Test Case 2 - Six Overlapping Units
Reference No Motion Medium Motion

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Additional Missing
Values (% Total Pixels)

- - - - - - 17.2 15.7 18.3 17.2 15.2 16.2 0.9 0.8 2.8 1.5 -0.0 2.2

RMS Instability (mm) 18.1 24.9 18.4 18.7 13.1 21.5 19.3 26.8 18.1 19.9 13.5 23.1 20.4 26.4 20.7 20.3 14.6 23.3

Figure 5: Six Kinect unit placement for Test Case 2 of Section 5.1

Table 3: Test Case 3 - Three Overlapping Units
Reference No Motion Medium Motion

1 2 3 1 2 3 1 2 3
RMS Error (mm) 10.7 8.7 14.0 21.6 15.6 29.4 12.6 9.3 17.4
RMS Instability
(mm)

6.9 5.3 6.9 9.7 7.3 12.2 12.8 7.8 15.4

Our second test case, shown in Figure 4 and quantified in Ta-
ble 2, presents a near-worst-case scenario in the number of cam-
eras that overlap a single nearby surface. The views of six densely
placed Kinects converge on a nearby subject (a mannequin placed
approximately 1.3 m from the central cameras) as shown in Figure
5. All cameras except camera 2 were placed in motion. Using our
motion technique, the amount of additional missing depth values
decreased by an average factor of 12. Few additional missing depth
values remained and in one case fewer missing values were found
than in the ground truth image. Measurement instability generally
increased slightly for units in motion.

Our third test case, quantified in Table 3, provides an evaluation
of measurement error. Three cameras were placed in an arc approx.
2 m from a 43 cm × 56 cm planar target placed roughly parallel to
the image plane of the central camera. Measurements correspond-
ing to the planar target were segmented from the rest of the scene by
depth values and were used for the previously described measure-
ment error computation. Without our motion technique applied, the
increase in error due to multi-camera interference was nearly 100%;
with our interference technique applied, this figure dropped to ap-
proximately 18%, but an increase in measurement instability was
noted.

5.2 Image Blurring

The three motion amplitudes (“low”, “medium”, and “high”) of Ta-
ble 1 correspond approximately to motion blur with lengths of 1.5,
2.5, and 4.5 pixels respectively. Figure 6 shows a frame from a cap-
ture session with motion amplitude set to medium and deblurring
applied as described in Section 4.2. The test pattern in the back-
ground shows that the image remains relatively sharp.

6 CONCLUSIONS AND FUTURE WORK

We have presented a solution to the problem of interference be-
tween multiple structured light depth cameras that is scalable and
allows all devices to run at full frame rate. Our simple hardware so-
lution uses parts costing only a few US dollars and can be installed

Figure 6: Deblurred color image from camera in motion at “Medium”
setting of Table 1.

in minutes.
We have demonstrated that our system is effective at reducing in-

terference holes and measurement error and scales to a large num-
ber of densely placed Kinect sensors with prominently overlapping
views. We have also shown that a side-effect of our method, blur-
ring of the color image, can be mitigated with image deconvolution.

We intend to test our technique on an expanded sensor array that
can provide dense scene capture of an entire small room. Addi-
tionally, we plan to implement more sophisticated image deblurring
techniques and implement them in real-time.
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